Access to Finance: The Cocoa Case Cocoa Sector Training for Financial Institutions

Part 1: Cocoa Sector Training

A Short Description of Cocoa
Cocoa in Indonesia
State of Indonesian Cocoa Farms
The Concept of Value Chains
Description of Value Chain Actors
Key Constraints & Opportunities in the Indonesian Cocoa Sector
Cocoa Beans – Quality, Categories and Prices
Cocoa Production
Certification & Traceability
Pictures, Definitions, and Processes
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>List of Figures</td>
<td>4</td>
</tr>
<tr>
<td>List of Tables</td>
<td>5</td>
</tr>
<tr>
<td>List of Photos</td>
<td>5</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>7</td>
</tr>
<tr>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>A Short Description of Cocoa</td>
<td>10</td>
</tr>
<tr>
<td>Cocoa in Indonesia</td>
<td>14</td>
</tr>
<tr>
<td>State of Indonesian Cocoa Farms</td>
<td>18</td>
</tr>
<tr>
<td>The Concept of Value Chains</td>
<td>22</td>
</tr>
<tr>
<td>Description of Value Chain Actors</td>
<td>26</td>
</tr>
<tr>
<td>5.1. Agri-input Providers</td>
<td>27</td>
</tr>
<tr>
<td>5.2. Producer</td>
<td>27</td>
</tr>
<tr>
<td>5.3. Collectors</td>
<td>31</td>
</tr>
<tr>
<td>5.4. Middlemen/Traders</td>
<td>33</td>
</tr>
<tr>
<td>5.5. Processors</td>
<td>34</td>
</tr>
<tr>
<td>5.6. Exporters/Commodity Traders</td>
<td>35</td>
</tr>
<tr>
<td>5.7. International Cocoa Grinders</td>
<td>35</td>
</tr>
<tr>
<td>5.8. Farmer Organizations</td>
<td>35</td>
</tr>
<tr>
<td>5.9. Service Providers</td>
<td>38</td>
</tr>
<tr>
<td>Cocoa Beans – Quality, Categories and Prices</td>
<td>42</td>
</tr>
<tr>
<td>7.1. Quality</td>
<td>43</td>
</tr>
<tr>
<td>7.2. General Quality Characteristics</td>
<td>43</td>
</tr>
<tr>
<td>7.3. Physical Characteristics</td>
<td>45</td>
</tr>
<tr>
<td>7.4. International Cocoa Standards</td>
<td>47</td>
</tr>
<tr>
<td>7.5. Definitions regarding the International Cocoa Standard</td>
<td>47</td>
</tr>
<tr>
<td>7.6. Indonesian Cocoa Standard</td>
<td>48</td>
</tr>
<tr>
<td>Cocoa Production</td>
<td>50</td>
</tr>
<tr>
<td>8.1. The Crop Production Cycle over the Year</td>
<td>51</td>
</tr>
<tr>
<td>8.2. Nursery</td>
<td>51</td>
</tr>
<tr>
<td>8.3. Planting Cacao Trees</td>
<td>54</td>
</tr>
<tr>
<td>8.4. Growing Cocoa</td>
<td>58</td>
</tr>
<tr>
<td>8.5. Maintenance & Good Agricultural Practices</td>
<td>60</td>
</tr>
<tr>
<td>8.6. Post-harvest Processes</td>
<td>76</td>
</tr>
<tr>
<td>8.7. Sale</td>
<td>80</td>
</tr>
<tr>
<td>8.8. Transport</td>
<td>81</td>
</tr>
<tr>
<td>Certification & Traceability</td>
<td>82</td>
</tr>
<tr>
<td>Key Constraints & Opportunities in the Indonesian Cocoa Sector</td>
<td>38</td>
</tr>
<tr>
<td>Pictures, Definitions, and Processes</td>
<td>56</td>
</tr>
<tr>
<td>10.1. End Products</td>
<td>87</td>
</tr>
<tr>
<td>10.2. Raw Products</td>
<td>87</td>
</tr>
<tr>
<td>10.3. Pests and Diseases</td>
<td>90</td>
</tr>
<tr>
<td>10.4. Processing</td>
<td>92</td>
</tr>
<tr>
<td>10.5. Cocoa Dictionary</td>
<td>96</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1: Indonesian Cocoa Production 2010-2013 by Province ... 17
Table 2: International Cut Test Quality Criteria ... 47
Table 3: Indonesian Bean Quality General Requirements .. 48
Table 4: Indonesian Bean Quality Specific Requirements .. 48
Table 5: Cacao Clones Used in Indonesia .. 55
Table 6: Yield Examples After Planting Cacao Trees ... 72

LIST OF PHOTOS

Photo 1: Cacao Tree ... 13
Photo 2: Cacao Trees at Several Life Stages and Shade trees .. 20
Photo 3: Agri-inputs ... 27
Photo 4: Smallholder Farmer ... 27
Photo 5: Village Collector ... 31
Photo 6: Buying Station ... 33
Photo 7: Cocoa Factory ... 34
Photo 8: Certified Cocoa in a Warehouse .. 35
Photo 9: Vats Containing Liquid Cocoa in a Processing Center ... 35
Photo 10: Farmers Organized in Groups .. 35
Photo 11: Quality Assessment of Cocoa Beans ... 43
Photo 12: Fermented beans .. 44
Photo 13: Waste Sample .. 45
Photo 14: Tool to measure moisture .. 45
Photo 15: Nursery .. 52
Photo 16: Seed Preparation ... 53
Photo 17: Polybags .. 53
Photo 18: Cacao Seedling ... 53
Photo 19: Top-Grafting ... 53
Photo 20: Removing old tree ... 56
Photo 21: Planting preparations ... 57
Photo 22: Planting the tree ... 57
Photo 23: Cocoa Flowers Growing Directly on the Trunk .. 58
Photo 24: Cocoa Pods in Different States of Development .. 59
Photo 25: Tree with Pods .. 59
Photo 26: Pruning .. 62
LIST OF PHOTOS

Photo 27: Budwood ... 63
Photo 28: Side-Grafting ... 63
Photo 29: Unsuccessful Side-grafting 63
Photo 30: Fertilizer Application in the Drop Zone 66
Photo 31: Inorganic Fertilizer 66
Photo 32: Sanitation ... 67
Photo 33: Pesticide Application 68
Photo 34: Weed-free Zone around the Cacao Tree 69
Photo 35: Empty Pods .. 71
Photo 36: Compost Making Machine 71
Photo 37: Compost Storage 72
Photo 38: Cutting the Pod 74
Photo 39: Collecting Pods 74
Photo 40: Opening Process 75
Photo 41: Open Cocoa Pod with Seeds and Pulp 75
Photo 42: Wooden Fermentation Box 77
Photo 43: Cocoa Beans Dried in a Solar Dryer 78
Photo 44: Waste Sorting Machine 78
Photo 45: Cocoa Beans in a Bag 79
Photo 46: Dark Chocolate 87
Photo 47: Cocoa Nibs ... 87
Photo 48: Cocoa Liquor ... 88
Photo 49: Cocoa Butter .. 89
Photo 50: Cocoa Powder 89
Photo 51: Black Pod .. 90
Photo 52: Vascular-Streak Dieback 90
Photo 53: Cocoa Pod Borer 91

ABBREVIATIONS

BI Bank Indonesia
BPR Bank Perkreditan Rakyat (People Credit Bank, rural bank)
BPRS Bank Perkreditan Rakyat Syariah (Islamic People Credit Bank, rural bank)
BRI Bank Rakyat Indonesia
cm Centimeter
CPB Cocoa Pod Borer
CSSV Cocoa Swollen Shoot Virus
FI Financial Institution
FOB Free-On-Board
g Gram
GAP Good Agricultural Practice
GFP Good Financial Practice
GHG Greenhouse Gas
GIS Geographic Information System
GNP Good Nutritional Practice
ha Hectare (= 10,000 m² = 2.5 acre)
IDR Indonesian Rupiah
JFX Jakarta Future Exchange
K Potassium
m Meter
MFI Microfinance Institution
mm Millimeter
MIS Management Information System
MT Metric Ton (= 1,000 kg)
N Nitrogen
P Phosphorus
PsPSP Panen sering, Pemangkasan, Sanitasi, Pemupukan (frequent harvesting, pruning, sanitation and fertilization)
SCPP Sustainable Cocoa Production Program
SNI Standard Nasional Indonesia (Indonesian National Standard)
ToT Training of Trainers
VC Value Chain
VSD Vascular-Streak Dieback
INTRODUCTION

Indonesia is home to 1.3 million cocoa farmers who are primarily classified as smallholders. As is the case with many smallholders in developing countries, the Indonesian cocoa farmers’ lack of Access to Finance (A2F) is inhibiting them from reaching their full production potential.

A2F includes access to loans, savings, insurance, and other financial products and services. While the first two topics are very important in the context of this manual, the latter two will only be touched on briefly. It is obvious that not every single cocoa farmer is eligible for a loan, but in absolute numbers there are still a huge number of farmers out there who have potential to become a good loan client. These farmers are concentrated in the several cocoa producing regions throughout the country, making them a promising target group for loan products.

In fact, a loan is nothing more than a future saving. Rather than just promoting loans, savings are encouraged to help ineligible farmers gain access to financial services. This allows farmers to build assets. For financial institutions this is a low-cost refinancing option. Both savings and loans could be used to purchase input material, maintain the farm, and improve production through investment. Cocoa is a very interesting crop since it can be harvested throughout the year. This means that even in the low season, cash flow can be generated. This makes cocoa different from other crops. Professional cocoa farming requires special skills and farmers working in the sector usually have years of experience. This is due to the fact that cocoa is a tree crop and needs time to establish itself before it begins to bear fruit. The economic life of a tree is about 30 years.

To make informed decisions, a financial institution has to become familiar with and understand the cocoa sector (or use an agent who does). Therefore, it is important to answer all the questions a financial institution might have so that they can become confident and positive about giving loans to cocoa farmers. The present manual is an attempt to do so and will provide you with the necessary information to understand the cocoa sector and offer insight into financing cocoa in Indonesia. It will explain value chains, risks, farming practices, cash flows, and so forth. In addition, the manual will also suggest feasible financial products to help address the issues of Access to Finance for cocoa farmers. With this understanding, you will be able to assess risks better, minimize them and offer commercially attractive products to the target group. Only then cocoa farmers and financial institutions will benefit from a long-lasting and mutually advantageous relationship.

Many farmers lack experience with loans from commercial institutions or even farmer organizations, although, many have borrowed from/lent to family and friends and/or received financing from traders. They are used to flexible solutions without formal collateral requirements. Basic expectations in working with a bank must be made clear, such as the importance of repaying on time.

The manual is written from a banker’s point of view and will be used for a three-day training program. This in-person training program is directed at bank workers from various positions, especially loan officers, and is to be used as a reference for your daily work. In order to keep it short and concise, some technical/agricultural topics are touched on briefly, but are not explained in academic detail. Some references to economics are made to understand the risks. With this, we hope that financial institutions will understand the cocoa sector better and will design appropriate products, but also act in a responsible way to help avoid over-indebtedness of farmers. Swisscontact trusts that financial institutions will use this information to provide better financial services to cocoa farmers.
The genetic origin of cacao is traced to the so-called Upper Amazon in South America. Thus, the Amazonian region of Peru is the original homeland of cacao. At maturity a cultivated tree tends to be kept to less than 4 m tall. Cacao trees have been recorded to live for up to 200 years in their natural environment; however, the economic life of a cacao tree is about 30 years. The tree is at its most productive for about 25 years, yet smallholder cocoa farmers tend to try and harvest their crops for around 40 years or longer. The lifespan of modern varieties is shorter and the soil around them is depleted after 20-25 years if not maintained through soil and shade management. In Indonesia trees are productive for about 15 years.

The root system of a mature tree is comprised of a taproot up to 2 m long and a dense system of lateral roots in the top 20 cm of the soil. These roots spread out to lengths of 5-6 m forming a dense surface-feeding mat. The flowers are produced in clusters directly on the trunk (cauliflory) and on branches when they are at least two to three years old. The flowers are small, 1–2 cm in diameter, and are pollinated by Forcipomyia midges. These midges are between 1-4 mm and belong biologically to the fly family. They require cool, dark, moist habitats and breed in rotting vegetation. Only 1-5% of flowers are successfully pollinated and form pods. Cacao trees have a fruit thinning mechanism where the young fruit (cherelles) stop growing, turn black and shrivel, but do not fall off the tree (cherelle wilt). The remaining fruit take five to six months to ripen after pollination. The fruit is an ovoid pod, 15–30 cm long, 8–10 cm wide, and weighs about 500 g when ripe. The pod contains 20 to 60 seeds, better known as beans, embedded in a white pulp. Each seed contains a significant amount of fat (roughly 40-60%) depending on the genotype, which is extracted to produce cocoa butter. Their most noted active constituent is theobromine, a compound similar to caffeine. Once fermented, beans can be processed into cocoa butter and cocoa powder. It takes about 400 beans to make approximately 0.5 kg of chocolate.

Traditionally, the cacao tree begins to bear fruit five years after planting, but advances in breeding have produced varieties that can start fruiting in their third year. The pace of decline after a period of high production is determined mainly by cultivation practices, but production costs rise steadily. Harvest season depends on the area since it can vary significantly from region to region.

Hybrid cacao trees are preferred because they are more resistant to known diseases and they yield a higher tonnage per hectare. For example, a cocoa farm that is cultivated under the traditional system with minimal maintenance may typically get a yield of 300 to 500 kg per hectare annually. While newer hybrids cultivated commercially under ideal farming conditions have been known to yield as much as 3,000 kg/ha/year.

The successful cultivation of cacao requires a special climate. The majority of the world’s crop is now grown within 10° North and South of the equator. It will grow from sea level up to a maximum of about 1,000 meters, although most of the world’s crop grows at an altitude of less than 300 meters. Temperatures...
must generally lie within the range of 18° - 30°C, with 10°C as the absolute minimum temperature that the plants can handle. Rainfall must be well distributed across the year, with a minimum of 1,000 mm. Excessive rain affects the bean size negatively; too little rain results in little flowering and thus the tree bears less pods. The trees must be protected from strong winds (the root system is not robust).

Wind can mechanically damage the pulvinus at the base of the leaf leading to leaf-fall and defoliation. Cacao likes a soil high in organic material and rich in nutrients. Nutrients found in the decaying cover of leaf litter on the rainforest floor are an important food source for cacao trees. Most of the nutrients in rainforest soils can be found in the topmost layer of decaying vegetation. Pests and diseases must be carefully controlled. Cacao prefers to grow in partial shade, but for full production the crop requires 4.5 to 6.5 hours of sunshine per day.
2. COCOA IN INDONESIA

Indonesia’s Ministry of Agriculture first began recording data on cocoa in 1967. Since then the area where cocoa is planted has expanded, yet the productivity has been declining since 2003.

Figure 2: Indonesian Cocoa Production 1967-2013

(The area in ha and the production in MT use the left axis values and the productivity in kg/ha uses the right axis values.)
The provinces that produced the most cocoa in 2013 are mainly located in Sulawesi and Sumatra:

<table>
<thead>
<tr>
<th>Province</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulawesi Tengah</td>
<td>138,306</td>
<td>124,777</td>
<td>144,358</td>
<td>149,071</td>
</tr>
<tr>
<td>Sulawesi Tenggara</td>
<td>141,176</td>
<td>114,578</td>
<td>122,960</td>
<td>120,243</td>
</tr>
<tr>
<td>Sulawesi Selatan</td>
<td>173,755</td>
<td>142,829</td>
<td>146,840</td>
<td>117,672</td>
</tr>
<tr>
<td>Sulawesi Barat</td>
<td>96,011</td>
<td>80,194</td>
<td>76,158</td>
<td>71,823</td>
</tr>
<tr>
<td>Sumatera Barat</td>
<td>49,388</td>
<td>44,613</td>
<td>48,113</td>
<td>58,740</td>
</tr>
<tr>
<td>Sulawesi Tenggara</td>
<td>49,388</td>
<td>44,613</td>
<td>48,113</td>
<td>58,740</td>
</tr>
<tr>
<td>Sulawesi Selatan</td>
<td>173,755</td>
<td>142,829</td>
<td>146,840</td>
<td>117,672</td>
</tr>
<tr>
<td>Sulawesi Barat</td>
<td>96,011</td>
<td>80,194</td>
<td>76,158</td>
<td>71,823</td>
</tr>
</tbody>
</table>

The provinces that produced the most cocoa in 2013 are mainly located in Sulawesi and Sumatra:
3. STATE OF INDONESIAN COCOA FARMS

Figure 4: Cocoa Farm Composition

- **70.9%** Productive trees
- **11.5%** Old trees (Not yielding anymore)
- **7.7%** Shade trees, fruit trees & other farm land use
- **9.9%** Young trees (Not yet yielding)

State of Indonesian Cocoa Farms
The average cacao tree age in Indonesia is 17 years, with 65% of farms in a low production phase.

Figure 5: Age of Cocoa Farm

- **Production Status of Cacao Trees**
 - Young trees (<3 yr): 18%
 - High Production (4-7 yr): 1%
 - Good Production (8-15 yr): 47%
 - Low Production (16-25 yr): 1%
 - Old Trees (>25 yr): 25%

Figure 6: Average Farm Age in Selected Provinces

- Aceh: 12.4 years
- West Sulawesi: 20.4 years
- South Sulawesi: 20.4 years
- Central Sulawesi: 18.8 years
- Southeast Sulawesi: 20.6 years
- West Sumatera: 10.1 years

Photo 2: Cacao Trees at Several Life Stages and Shade Trees
4. The Concept of Value Chains

In general, a value chain can be defined as the process to bring a product like cocoa through the different phases of production and transforming it to an end-consumer product. It is a system, made of sub-systems, each with inputs, transformation processes and outputs. This involves the acquisition and consumption of resources.²

² Worldbank, UNIDO

1. Growing and harvesting
 - The cacao tree only grows in equatorial climates. More than 5 million family farms across West Africa, Southeast Asia and Latin America produce nearly 4 million tonnes of cocoa beans every year. When the pods are ripe, they are harvested and the beans are extracted.

2. Fermenting and drying
 - The cocoa beans are covered for 5 to 7 days to ferment and develop their flavor, after which they are dried in the sun for approximately 6 days.

3. Collection and shipping
 - The farmers bring sacks of cocoa beans to collection centers of intermediaries for weighing and quality checks. The beans are then sold and transported to one of our factories for further processing.

4. From bean to cocoa liquor
 - The beans are cleaned, dried, blended, and broken to remove the shells. The nibs inside are roasted and ground to a fine mass, cocoa liquor, which can be used as an ingredient for chocolate or further processed into cocoa powder and cocoa butter.

5. Making chocolate
 - Cocoa liquor and other ingredients are mixed and pressed between rollers to form a fine powder. This chocolate powder is kneaded for hours in conches to smoothen its texture and develop aromas. Cocoa butter and lecithin are added to make the chocolate liquid.

6. Molding and delivery
 - The liquid chocolate is stored in large hated tanks so that it can be pumped later on and transported to industrial customers, or it is molded into shape and then packaged for transport and delivery to artisanal customers.
Indonesian Supply Chain Stakeholder

EXPORTING
- Local Exporters
- Multinational Affiliated Exporters

LOCAL PROCESSING
- Local Traders
- Local Collectors
- Regional Processors

COLLECTION
- Local Traders
- Local Collectors
- Buying Stations

PRODUCTION
- Smallholder Farmers (0.5 - 1.5 Ha) (93%)
- State Enterprise (4%)
- Private Farmers (3%)

INPUT PROVIDERS
- Production Costs Rp. 6,500/Kg
- State Enterprise
- Private Enterprise

Figure 8: Indonesian Supply Chain Stakeholder
Source: USAID, adjusted by SCPP
5. DESCRIPTION OF VALUE CHAIN STAKEHOLDER

The Indonesian cocoa value chain is long and involves multiple players, with large influence of the international grinders. It has evolved to be quite transparent and efficient with the smallholder farmer receiving up to 80% of the world’s market price. Traceability has become more and more important to track the cocoa beans the entire way, from the farmer to the consumer.

5.1. Agri-input Providers

The major inputs for smallholder cocoa production are seedlings, planting material, tools, fertilizers, and pesticides. Most farmers obtain seedlings and planting material from their own or neighboring farms/nurseries. Cocoa farmers typically buy their tools, fertilizers and pesticides from small retail shops/kiosks in nearby towns. However, there is limited access for farmers who do not live near towns, especially access to commercial fertilizer and pesticides. There is no subsidized fertilizer specifically made for cocoa. Additionally, during fertilizing seasons, other crops such as rice are claiming a large amount of fertilizer as well. Therefore, the quantity and availability of fertilizer is not always guaranteed which makes it difficult for cocoa farmers to care for their farms properly.

5.2. Producers

Smallholders remain the predominant producers of Indonesian cocoa (93%), followed by state plantations (4%) and private estates (3%).

Unfortunately, smallholder farmers’ knowledge and implementation of ‘best-practice’ cocoa farm husbandry techniques is limited as can be seen in the declining average productivity (see figure 2). Smallholders can improve their knowledge through trainings. Trainings are provided by the government, farmer organizations, or other service providers such as Swisscontact’s Sustainable Cocoa Production Program (SCPP), which also developed this present manual.
Some farmer statistics:

The average age of cocoa farmers participating in SCPP is 44.7 years. The life expectancy in Indonesia is 69 years for men and 73 years for women. 22.99% of the farmers are young. 38.46% of the farmers have completed elementary school, while only 2.70% of the farmers did not go to school at all.

The gender of the registered farmers who are participating in SCPP’s Good Agriculture Practices (GAP) training is 81.3% male and 18.7% female.

The majority of farmers have either a medium sized farm (44.59%) or small farm (41.79%). Only 13.62% are considered to be large farms. The average farm size is 0.99 hectare per cocoa farmer household. Certified farmers participating in the SCPP have an average of 1.13 ha, 13% more land than uncertified farmers.

12.29% of the farmers are considered professional and 31.43% as progressing. There is a lot of potential to support unprofessional farmers and bring them into the progressing category.

By definition professional farmers have higher production per hectare than unprofessional farmers. This results in higher cash flow per hectare and would be preferred over unprofessional farmers for business loans.

3 Many more information can be found in SCPP’s AFF Baseline Report (2016).
5 The Age Distribution chart was changed according to the ILO definitions, which regards young people to be under the age of 35.
6 For 1.85% of the farmers, no information regarding school attendance is available. SCPP tries to work with literate farmers to ensure the best possible understanding of the materials and knowledge taught.
7 The limitations of a categorization lay in the categorization criteria. Instead of yield per hectare, yield per tree could also be used.
Compared to unprofessional farmers, professional cocoa farmers have 17.97% more trees per hectare (860 vs. 729) and a 4.05 times higher yield per tree (1.50 kg/tree vs. 0.37 kg/tree), totaling to a 4.85 times higher production per hectare (1,293 kg/ha vs. 267 kg/ha).

On average, the top 10% of the farmers have a much higher annual farm yield of 1,177 kg/ha than the bottom 10% with just 205 kg/ha.

42.66% of the cocoa farmers have experience with loans from various sources, while 57.34% do not have any loan experience. From all farmers with loan experience, 13.10% received a loan from a bank.

5.3 Collectors

There is a strong informal local trader network in the Indonesian cocoa sector. Up to 90% of farmers sell their cocoa directly to local collectors at the farm-gate or to local traders at warehouses.8

Local collectors are usually cocoa farmers themselves, farmer groups or rural entrepreneurs who purchase cocoa beans directly from farmers, collecting them by motorbike, pickups or small trucks. The scale of these purchases is usually small with a quick turnover, small margin, and minimal opportunity for speculation.

Typically, collectors and smaller traders do not provide a premium for quality or price discrimination.

8 The words “trader” and “collectors” are often not distinguished.
5.4. Middlemen/Traders

Local traders purchase cocoa beans from local collectors and occasionally directly from farmers. Traders are usually engaged in a variety of other businesses, typically trading in other commodities as well. Local middlemen are a source of pre-harvest finance for about 20-50% of cocoa farmers, either in cash or in-kind (agri-inputs).

Traders sell most of their cocoa beans to local exporters although a smaller amount flows to local processors. Collectors do not need licenses or permits to operate, so competition is fierce with few barriers to entry. Traders need a business permit from the local government.

These smaller traders typically deal in a range of commodities depending on the region (clove, cashew, coffee, etc.). Maintaining loyal relationships with individual farmers is key, but proves to be difficult due to high competition among traders seeking cocoa. This results in farmers preferring to side-sell their cocoa to multiple traders so they can get the best price. However, loyalty is often high, although farmers sell to more than one trader.

At buying stations and warehouses the beans are further bulked, cleaned and calibrated before they are traded to international buyers/processors. Larger international firms establish local or ‘up-stream’ buying stations to source cocoa locally and directly from the farmers. Based on direct farmer sales to buying stations, 86% of sustainable certified farmers sell directly to buying stations to keep the certification sales channel rather than selling through middlemen.
5.5. Processors
Cocoa processing, or grinding, entails the transformation of dried cocoa beans into a variety of processed products including cocoa paste/liquor, cake, powder and butter. Processors have strict quality standards and expect their suppliers to meet these standards.

5.6. Exporters / Commodity Traders
Local exporters buy from collectors and traders who deliver beans to their storage facilities. Many of these local exporters have found it increasingly difficult to compete with the large-scale international exporters and have begun to sell to them rather than continue to export independently.

Due to the introduction of an export tax a few years back, cocoa beans are more frequently being processed in Indonesia and only processed products like cocoa powder or butter are exported.

Large multinational companies active in Indonesia are Barry Callebaut, Cargill, Ecom and Olam.

5.7. International Cocoa Grinders
Within a short span of time, the grinders have become the most powerful actors in the cocoa value chain. This is mainly due to ongoing horizontal and vertical integration, which refers to the concentration process in the grinding segment and the outsourcing of liquid chocolate respectively.

Cocoa grinders have a highly concentrated market structure. The ongoing concentration process in the grinding segment is very dynamic. Big companies operating in Indonesia are Barry Callebaut and Cargill (both are also active in other commodities and act as traders too).

5.8. Farmer Organizations
Indonesian cocoa farmers are traditionally organized in village-level groups of 25 to 30 farmers, so they can access extension services and cooperate in labor-intensive activities like pruning, weeding and pod sanitation. Formal farmer organization in cooperatives is very low. Less than 10% of the farmers are members of a farmer organization. Farmer organizations will become more important players in the future as they continue to represent the interests of the farmers and provide different kinds of services for farmers, e.g. trainings, trade, fertilizer retail services, support in land registration, etc. Furthermore, farmer organizations have potential to become an intermediary for savings and loans.
5.9. Service Providers
Currently the global cocoa sector oversees several initiatives that focus on increasing production to ensure a stable supply of beans, which also improves the livelihood of smallholder farmers. Part of these efforts is farmer capacity building such as facilitating trainings in Good Agricultural Practices. In addition, attention is also paid to family nutrition, environmental impacts, business practices, community development, and farmers’ Access to Finance.

In Indonesia there are a number of service providers active. The implementation of programs through such providers is dynamic. Banks could partner with such organizations to provide better access to finance for cocoa farmer households (e.g. savings) and to identify potential loan clients with sufficient repayment capacity.
Based on this outlook, and in collaboration with potential key partners, major restrictions and opportunities have been identified in order to create possible program strategies. These potential solutions reflected areas that must be upgraded to ensure greater production and competitiveness of various actors along the cocoa bean value chain.

The major value chain constraints and opportunities in the Indonesian cocoa sector are presented in the table below and give financial institutions an idea of challenges in the sector, but also how to overcome them.

<table>
<thead>
<tr>
<th>CONSTRAINT</th>
<th>POTENTIAL OPPORTUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmer Behavior</td>
<td></td>
</tr>
<tr>
<td>Farmers’ mindset and willingness to upgrade production. “Tree crops do not need to be taken care of” is a common perception.</td>
<td>Conduct farmer group development, working together to resolve the problems with leading firms’ field staff Hold farmer field days as a medium for farmers to share their experience regarding their results and obstacles.</td>
</tr>
<tr>
<td>Price differentials alone, however, do not appear to be a sufficient incentive for all farmers to invest in greater farm productivity or bean quality</td>
<td></td>
</tr>
<tr>
<td>On-Farm Productivity</td>
<td></td>
</tr>
<tr>
<td>Cocoa farm productivity and farmers income is decreasing due to a number of causes including:</td>
<td>Work closely with the private sector to assist in educating their trainers who then provide intensive training to their targeted farmers Develop a manual standard highlighting good and climate-smart agricultural practices Establish/scale up cocoa demo plots as a medium for the transfer of technology Conduct cocoa workshops to transfer knowledge and assist in the implementation of the needed skills, know-how, and information to improve cocoa productivity</td>
</tr>
<tr>
<td>• Poor adoption of GAP</td>
<td></td>
</tr>
<tr>
<td>• Widespread infestation of pests and diseases (primarily the Cocoa Pod Borer - CPB, Black Pod)</td>
<td></td>
</tr>
<tr>
<td>• Age and variety of existing tree stock</td>
<td></td>
</tr>
<tr>
<td>• Poor soil management</td>
<td></td>
</tr>
<tr>
<td>• Unstable climatic conditions (drought and flooding)</td>
<td></td>
</tr>
</tbody>
</table>
Key Constraints & Opportunities in the Indonesian Cocoa Sector

<table>
<thead>
<tr>
<th>CONSTRAINT</th>
<th>POTENTIAL OPPORTUNITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of Inputs</td>
<td>Coordinate with government research facilities to assist in awareness and distribution of improved tree stock</td>
</tr>
<tr>
<td>Limited commercial distribution and availability of improved agricultural inputs and planting materials for smallholder farmers</td>
<td>Strengthen and support farmer organizations in functioning as local agri-inputs and services distributors</td>
</tr>
<tr>
<td>Farmers lack instruction on the use of appropriate fertilizers and pesticides, when to use them, and in what amounts</td>
<td>Continue farmer group development by providing the groups with the technical skills on how to develop a commercial cocoa nursery</td>
</tr>
<tr>
<td></td>
<td>Link and work with input supply companies to develop and distribute special fertilizer “packages” for cocoa, based on soil analysis and provide additional services.</td>
</tr>
<tr>
<td>Market Access</td>
<td>Improve skills, knowledge and capacity through group development and management training</td>
</tr>
<tr>
<td>Many smallholder farmers are unable to sell their production in large volumes and therefore cannot benefit from direct sales with exporters and processors</td>
<td>Encourage transparent market price signals across the entire value chain</td>
</tr>
<tr>
<td></td>
<td>Promote access to up-country buying stations where smallholders can bring cocoa beans for direct sale to exporters and processors</td>
</tr>
<tr>
<td>Access to Finance</td>
<td>Work closely with financial institutions to improve the availability of and access to credit for smallholder farmers to purchase farming inputs</td>
</tr>
<tr>
<td>Smallholder farmers lack access to acceptable collateral for financial institutions. As a result, farmers are not able to finance the purchase of inputs. Farmers have access to informal loans, but are required to sell to the lender. Some farmers do not have a saving culture, and face a lack of knowledge on how and where to save money.</td>
<td>Work on a model for off-take agreements or harvest guarantees as a way of financial collateral</td>
</tr>
<tr>
<td></td>
<td>Develop a saving culture amongst the farmers to purchase smaller inputs themselves and practice a regular saving/loan repayment</td>
</tr>
<tr>
<td>Post-Harvest Processing</td>
<td>Encourage the downstream processors to reward farmers through price incentives and/or other suitable reward mechanisms to assist in the increased fermentation of cocoa beans</td>
</tr>
<tr>
<td>The production of fermented cocoa beans in Indonesia is limited which reduces potential quality and value-added opportunities for smallholder farmers</td>
<td>The official registration options for rural businesses, including farmer groups, are limited. This restricts their ability to engage in formal commercial activities or transactions</td>
</tr>
<tr>
<td>Enabling Business Environment</td>
<td>Access lobbying services to expand the legal status options for farmer groups, and rural enterprises in general, to effectively conduct business operations</td>
</tr>
<tr>
<td></td>
<td>Provide farmer groups with the necessary tools to recognize their group status, so they are able to make collective strategic plans and improve their group’s status</td>
</tr>
<tr>
<td>Certification procurement (administrative) is too complicated and farmers are unable to consistently record all the information to meet certification requirements</td>
<td>Collaborate with other organizations to strengthen or scale up farmers and farmer groups to conduct sustainability certifications</td>
</tr>
<tr>
<td></td>
<td>Provide group empowerment and train group members in effective internal management systems</td>
</tr>
<tr>
<td>The market acceptance and demand for Indonesian cocoa beans of various quality does not provide incentives for farmers to invest in improving farm productivity or bean quality</td>
<td>Work with the various auditing agencies to simplify certification recording and note taking</td>
</tr>
<tr>
<td>Processors, exporters, and traders have limited access to working capital loans, which decreases their turnover and income potential Lack of coordination among the primary and supporting stakeholders (government, associations, NGO’s, and private sector) in the cocoa subsector, which results in inconsistent messages, lack of cost-sharing, and limited use of synergies Export tax on cocoa beans increases the exporters’ cost. Those costs are passed down the value chain, negatively impacting incentives for farmers</td>
<td>Assist in the availability of financial services for exporters, traders, and processors based on alternative sources of collateral (e.g. inventory) Work closely with private/public sector who have been actively investing in the development and improvement of the Indonesian cocoa sector Actively work with and contribute to the CSP as the lead cocoa forum Host in-depth discussions with cocoa stakeholders through CSP to repeal the export tax on cocoa</td>
</tr>
<tr>
<td>Coordinate with key stakeholders in establishing buying units and reward systems for farmers/farmer groups if they have met the certification requirements</td>
<td>Work closely with the private sector to assist farmer groups in the implementation of certified bean programs</td>
</tr>
<tr>
<td></td>
<td>Coordinate with key stakeholders to build legal options for rural businesses, including farmer groups, and rural enterprises in general, to effectively conduct business operations</td>
</tr>
<tr>
<td>Provide group empowerment and train group members in effective internal management systems</td>
<td>Source: Panlibuton and Meyer, 2004, CSP workshop on certification, AMARTA I survey 2010 and discussions with the private and public sector.</td>
</tr>
</tbody>
</table>
7. Cocoa Beans – Quality, Categories and Prices

7.1. Quality
Quality refers to various aspects, e.g. flavor, purity and grade, but also physical characteristics that affect the yield of edible material.

There are some quality aspects that the grower has little influence on and which depend on the quality of the planting material. Primarily these have to do with the fat content of the beans and flavor characteristics. The former is influenced by the variety grown as well as climatic conditions (notably the rainfall level and the stage of pod development at which the rain falls). Flavor characteristics are influenced by the variety grown, but the grower does have some control over whether or not these develop in the post-harvest processing.

A proper assessment of cocoa quality can take up to an hour.

7.2. General Quality Characteristics

7.2.1. Flavor & Off-Flavor
Manufacturers need cocoa beans that can be processed into chocolate with a good flavor, so that consumers will enjoy the taste. This is the most important feature of the cocoa bean, but it is one which cannot be closely defined, nor can it be assessed objectively, as flavor has to be assessed by tasting the chocolate made from a sample of beans.
For Indonesian cocoa the flavor is of less importance, since Indonesian beans – because of their fat content – are used as filler together with flavor beans from other producing countries.

Mold is one of the most significant causes of off-flavor. As few as 4% of beans with internal mold can produce an off-flavor in the entire sample. Mold can be avoided through proper, dry storage. Slaty (unfermented) beans have none of the precursors of chocolate flavor and chocolate made from them has a bitter, astringent and thoroughly unpleasant flavor. Another off-flavor is smoke which is usually attributed to contamination by smoke during drying or storage.

7.2.2. Assessment of Fermentation

The degree of fermentation can be divided into four categories:

- Fully fermented
- Partly brown, partly purple
- Fully purple
- Slaty

7.2.3. Purity

Purity refers to contamination. The main source of contamination is the use of pesticides. Manufacturers are concerned that they affect the flavor, governments are concerned that they leave toxic residues. Contamination is checked during import procedures and contaminated beans are not allowed to be imported in various countries, e.g. Japan.

7.3. Physical Characteristics

A cut test is a standard procedure to assess the quality of the beans. It can identify the quantity of moldy or unfermented beans, but also detect other damages. A random sample is taken (100 – 300 beans) and cut lengthwise. Each bean shall be inspected in full daylight or equivalent artificial light. Any bean with more than one fault shall only be classified in one category of fault. Bean weight, shell percentage and fat content are the major physical characteristics of cocoa beans, all of which are measured objectively. If the characteristics are not fulfilled, it is more difficult to sell the beans and the price is lower.

7.3.1. Waste

Little stones, placenta residues or branches do not have any value for the buyer. That kind of waste can unintentionally enter the cocoa bags and increase the weight. If too much waste is discovered, price discounts are applied.
7.3.2. Moisture
Another characteristic that influences the price is moisture, especially if too wet. Water has a weight, and this doesn’t have a value for the buyer either. If too wet, the buyer has to spend time and effort to dry the beans before they can be sold to the next off-takers. This reduces the turnover speed and therefore binds working capital. Besides that, beans that are too wet can cause mold, which was described before.

7.3.3. Bean Weight
Average bean weight is expected to be between 1.0 - 1.2 g, although standard contracts accept max. 110 beans per 100 g (= 0.91g/bean). Bean weight is influenced by the type of tree and by the rainfall during the development phases of the cocoa pod.

7.3.4. Shell Percentage
The shell is removed during the manufacturing process and is of very little value. Still, the weight of the shell is included in the price when selling the cocoa beans. The percentage of the shell weight compared to the overall bean weight depends on the bean size. Smaller beans have a higher percentage of shell than larger beans. The amount of shell is between 10% (larger beans) and 14% (smaller beans). Sometimes the shell can even make up 17% or more of the weight. Therefore, manufacturers prefer larger beans.

7.3.5. Fat Content
The content of cocoa butter is usually expressed as a percentage of the dry nib (or cotyledon). Fat content is roughly between 40% and 60%, depending on the growing region, genotype of plant material, and the harvesting season.

7.3.6. Definitions regarding quality
Moldy bean. A cocoa bean with mold visible to the naked eye on the internal parts.
Slaty bean. An under fermented cocoa bean which shows a slaty, purple color over half or more of the surface exposed by a cut made lengthwise through the center.
Insect-damaged bean. A cocoa bean where the internal parts contain insects at any stage of development, or show signs of damage caused thereby, which are visible to the naked eye.
Germinated bean. A cocoa bean with a shell that has been pierced, slit, or broken by the growth of the cotyledons. They are considered defect, because the hole provides an easy entrance for insects and mold.
Flat bean. A cocoa bean with cotyledons that are too thin to be cut.

7.4. International Cocoa Standards
International Cocoa Standards were agreed on in Paris in 1969. They define “cocoa of merchantable quality” as:
1. Cocoa of merchantable quality must be fermented, thoroughly dry, free from smoky beans, free from abnormal or foreign odors and free from evidence of adulteration.
2. It must be reasonably free from living insects.
3. It must be reasonably uniform in size, reasonably free from broken beans, fragments and pieces of shell, and be virtually free from foreign matter.

Cocoa is graded on a result of a cut test (maximum percentage by count):

<table>
<thead>
<tr>
<th>Grade</th>
<th>Moldy</th>
<th>Slaty</th>
<th>Insect damaged, germinated and flat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Grade II</td>
<td>4%</td>
<td>8%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Table 2: International Cut Test Quality Criteria

7.5. Definitions regarding the International Cocoa Standard
Thoroughly dry. Cocoa which has been evenly dried throughout. The moisture content must not exceed 7.5% as determined at first port of destination or subsequent points of delivery.
Smoky bean. A cocoa bean which has a smoky smell or taste or which shows signs of contamination by smoke.
Uniform in size. As a guide no more than 12% of the beans should be outside the range +/- 1/3 average weight.

All dry cocoa that fails to reach the standard of Grade II will be marked as sub-standard cocoa and shall only be marketed under special contract.
7.6. Indonesian Cocoa Standard
The Standard Nasional Indonesia (SNI) has the following criteria:

Classifications
According to its plant genus, cocoa beans are classified into:
1) Fine Cocoa / F) (Criollo and Trinitario species, or its crosses)
2) Bulk Cocoa / B) (cocoa beans from the Forastero cocoa plant)

According to its quality (see criteria below), cocoa beans are classified into:
1) Grade I
2) Grade II
3) Grade III

According to its weight (beans per 100 g), cocoa beans are classified into:
AA: maximum of 85 beans per hundred grams
A: 86 – 100 beans per hundred grams
B: 101 – 110 beans per hundred grams
C: 111 – 120 beans per hundred grams
S: over 120 beans per hundred grams

Quality Requirements
General Requirement

<table>
<thead>
<tr>
<th>No.</th>
<th>Test Type</th>
<th>Unit</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Live insects</td>
<td>-</td>
<td>None</td>
</tr>
<tr>
<td>2.</td>
<td>Moisture Content</td>
<td>% of mass fraction</td>
<td>Max. 7.5</td>
</tr>
<tr>
<td>3.</td>
<td>Smoky, hammy, or other foreign-smelling beans</td>
<td>-</td>
<td>None</td>
</tr>
<tr>
<td>4.</td>
<td>Ratio of foreign objects</td>
<td>-</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 3: Indonesian Bean Quality General Requirements (SNI)

<table>
<thead>
<tr>
<th></th>
<th>Fine Cocoa</th>
<th>Bulk Cocoa</th>
<th>Ratio of moldy beans (%)</th>
<th>Ratio of slaty beans (%)</th>
<th>Ratio of insect-damaged beans (%)</th>
<th>Ratio of waste (%)</th>
<th>Ratio of germinated beans (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I – F</td>
<td>I – B</td>
<td>Max. 2</td>
<td>Max. 3</td>
<td>Max. 1</td>
<td>Max. 1.5</td>
<td>Max. 2</td>
<td></td>
</tr>
<tr>
<td>II – F</td>
<td>II – B</td>
<td>Max. 4</td>
<td>Max. 8</td>
<td>Max. 2</td>
<td>Max. 2.0</td>
<td>Max. 3</td>
<td></td>
</tr>
<tr>
<td>III – F</td>
<td>III – B</td>
<td>Max. 4</td>
<td>Max. 10</td>
<td>Max. 2</td>
<td>Max. 3.0</td>
<td>Max. 3</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Indonesian Bean Quality Specific Requirements
8. COCOA PRODUCTION

8.1. The Crop Production Cycle over the Year
Production cycles vary for different regions. For example, the North of Sumatra is different from the South of Sulawesi. Therefore, it is important to make an analysis of the production cycle in the respective area(s) to define suitable products. Why disburse a loan to a farmer to buy fertilizer, if he cannot use it because it’s the wrong time in the year?

8.2. Nursery
A nursery is a place where seedlings and young cacao plants are raised under appropriate and supervised conditions. Seeds, often pre-germinated, are planted into polybags and a cacao plant grows out of it. Many of the seedlings are top-grafted with improved planting material after 3 months. After 4 to 6 months the seedlings are strong enough to be planted on the cocoa farm. Thus, a nursery normally has the capacity for 2 cycles per year. The size/capacity of the nursery can highly vary.
Seedlings are sold for prices between IDR 5,000 to 10,000. Production depends on the nursery size and input costs and ranges for a nursery with a capacity of 5,000 seedlings per production cycle from IDR 3,000 to 4,000 per seedling. With a selling price of IDR 7,500 and selling 80% of the first production, there could be already a profit, despite having all investment costs of about IDR 10 million.

The nursery needs shade, water and wind protection. It needs approximately 90 to 115 liters of water for 1,000 seedlings. Watering is recommended every 2-3 days, sometimes even daily. However, overwatering could lead to a fungal attack. Per square meter about 25 to 30 seedlings can be raised. Seedlings need attention every day as they are very sensitive to any damage which spreads fast if not caught in early stage.

The survival rate of seedlings in the nursery is about 80-90%.

The nursery also needs to sell seedlings as part of its business model, which means customers are needed and competition can be tough. Usually the input costs are low and therefore the financial risk is limited, especially since some of the seedlings can be used in the owner’s own cocoa farm. However, if the seedlings are under pest and/or disease attack, it could take up to 2 hours a day to maintain the nursery. Some farmers raise not only cacao seedlings, but other tree seedlings and vegetables as well. One option is to produce only on order.

Top Grafting:
Farmers can graft budwood onto seedlings that have been raised in a nursery. The grafted seedling will be a clone of the mother-tree from which the budwood has been taken, showing the same superior traits. Most cocoa varieties cross-pollinate, which means that cocoa seeds don’t hold the same genetic traits as their mother-tree. It’s therefore important to raise a cacao seedling in two stages, initially by planting a seed that will develop into a seedling with a strong root system and, after three months in the nursery, graft budwood harvested from a superior cacao clone onto this seedling.

If a cacao tree grows out of a seedling there is a significant time investment involved. Risk of failure has to be minimized. However, not all trees will be highly productive. Some will have very low productivity. To minimize that risk, top grafts from superior planting material are used to produce high yielding trees. It is accomplished when a graft is performed by cutting off the top of a seedling and attaching a small section of a selected budwood branch to the top of the seedling. The new budwood ‘extension’ is held to the top of the seedling with plastic tape and covered by a plastic bag. The grafted seedling will be a clone of the mother-tree from which the budwood has been taken, showing the same superior traits. This is usually done in nurseries by specialized cocoa farmers. Budwoods need to be certified. Technically it could be done also on a chupon or already planted seedlings in the farm.
8.3. Planting Cacao Trees

8.3.1. Planting Material

The most important input in any cropping system is the planting material, which is supposed to produce high yields of good quality beans under appropriate growing conditions. Such a broad definition can be broken down into various components: agricultural, commercial and local.

The desirable agricultural characteristics are:
1. Vigorous growth
2. Early bearing, which is a function of vigorous growth
3. Lowered seasonality – trees can bear pods all year long
4. High yields

Commercial characteristics are:
1. Good values for bean weight, shell and fat content. 93 beans per 100g should have a relatively uniform bean weight, shell content between 10-12%, and no less than 55% fat content in the dry nib (cotyledons).
2. High weight of beans per pod

Desirable local characteristics are:
1. A degree of resistance or tolerance to local pests and diseases
2. Adaptation to withstand specific local conditions such as a severe dry season, flooding, strong winds and acid soils

Besides the description of how to raise superior, top-grafted plants in nurseries, it would be also possible (but not recommended) to raise plants out of the seedling at the place the tree should grow.

Through top-grafting, the statistical, normal distributed production probability (as to be expected from seedlings raised from a seed) is shifted to an asymmetric, negative skew. That means that the probability of higher yields is increased; the expected value of produced yield is higher.

Related to planting material, there can be so called hybrids and clones. A hybrid is a tree raised from seeds that were cross-pollinated from a certain number of varieties (clones) in a controlled environment. The full genetics of the tree is then unknown and each tree is different. A clone is identical planting material because the original tree is reproduced vegetatively and it is usually top-grafted. As stated before, top-grafted trees should be preferred as their origin and potential is known.

In Indonesia, there are mainly local clones, as well as S2 and S1 planted. The advantages and disadvantages of planting them are:

<table>
<thead>
<tr>
<th>Clone</th>
<th>%</th>
<th>Good Characteristics</th>
<th>Bad Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>69.17%</td>
<td>Good adaptation on climate pressure</td>
<td>Low production</td>
</tr>
<tr>
<td>S2</td>
<td>16.91%</td>
<td>High productivity, tolerant to pest (CPB) and disease (black pods)</td>
<td>Small size of beans, need high inputs in order to keep better performance</td>
</tr>
<tr>
<td>S1</td>
<td>10.13%</td>
<td>High productivity</td>
<td>Intolerant to disease (black pods)</td>
</tr>
<tr>
<td>45/MCC02</td>
<td>2.26%</td>
<td>High productivity, and tolerant to pest and disease</td>
<td>Big canopy and need more efforts on pruning</td>
</tr>
<tr>
<td>Other</td>
<td>1.53%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Farmers can have their own nursery to raise seedlings or buy the cacao seedlings from a nearby nursery.

![Yield Distribution of Non-grafted and Top-grafted Cacao Trees](image-url)

Figure 21: Yield Distribution of Normal and Top-grafted Cacao Trees

![Planting Material Distribution](image-url)

Figure 22: Planting Material Distribution

Source: CSP Roadmap
8.3.2. Preparing the Land

New cacao trees can be planted on the existing land.

Photo 20: Removing old tree

Photo 21: Planting preparations

Photo 22: Planting the tree
Obviously, it is faster to burn down the forest to make “new land” farming ready. However, every single farmer who does this should be excluded from any loan, since this harms the environment to an unacceptable extent and bears high reputational risk for a financial institution.

An explanation:

During the burning, large amounts of carbon are released into the air, thus creating GHG emissions. This has an impact on climate change as well as human health. Nevertheless, ashes created during the burning increase the amount of soil carbon and micronutrients, which are valuable for the plant’s growth. That’s why soil after slash and burn farming methodology is very rich and fertile. The disadvantages are:

- It’s quickly absorbed by the plants and washed away by the erosion so the fertility generally doesn’t last more than 3 years. That’s not a good pre-condition for a farm that should last 30 years or more.
- The amount of pollution released during its production doesn’t balance the benefits. It harms the environment and human health.
- It can only be sustainable if there is enough time for the ecosystem (micro and macro organisms) to recover. In humid tropics this is around 30 years. This means that the local ecosystem is completely imbalanced after burning down the forest.

8.4. Growing Cocoa

Cacao trees need regular attention while growing, which will be explained further in the following chapters. This includes pruning to influence the desired shape and height, pest and disease control, sanitation and others.
8.5. Maintenance & Good Agricultural Practices

8.5.1. Good Agricultural Practices

Good Agricultural Practices (GAP) are farming practices that positively affect yield and quality, reduce pests and diseases, maintain the soil and are ecologically responsible. Post-harvest practices like fermentation are included as well. Whether a farm is financially viable or not depends on a variety of factors such as farm management, the age of plantation, weather conditions, etc. Above all else, cocoa requires a high level skillset to deliver financially viable yields. With a large share of annual cocoa yields lost due to pests and diseases, the most widespread GAP among Indonesian cocoa farmers are integrated pest management practices. For this purpose, a great majority of stakeholders in the Indonesian cocoa sector promote the following agricultural practices, collectively referred to as PsPSP:

- Frequent harvesting (Panen sering);
- Pruning (Pemangkasan);
- Sanitation (Sanitasi);
- Fertilization (Pemupukan) and soil/plant health;
- Pest and diseases management

A yield increase will be reflected after one year of proper management. A majority of farmers (93%) claim to apply PsPSP to some extent, although not strictly based on the guidelines. The advanced GAP are:

- Nursery management
- Replanting & rehabilitation
- Integrated pest & disease management
- Shade tree management, intercropping
- Demo plot management
- Livestock integration

The modules selection are based on previous farm evaluation and partner’s preference. The uptake of better agricultural practices and the use of agri-inputs tend to be higher for those cocoa farmers that rely on cocoa as their main source of income. For farmers growing cocoa as a secondary crop, adoption rates are generally lower.

8.5.2. Pruning

Pruning involves trimming, cutting back, removal of low or diseased branches. The purpose of pruning is to form the tree and make it a manageable height to simplify harvesting and other field operations. It gives a shape to the tree/graft and removes unnecessary branches so that the plant can direct energy to several strong branches and improve pod production/size. Another purpose of pruning is the creation of stress for the tree, resulting in higher intake of nutrients that leads to larger pods.

Sanitary pruning is used to maintain the health and vigor of the tree. This includes the removal of all unnecessary chupons, dead and diseased branches, mistletoes, epiphytes, climbing plants, ant nests, and diseased, rodent damaged, or over-ripe pods. The removal of chupons reduces the number of unhardened leaves, through which infections of vascular-streak dieback (VSD) disease happen. The removal of dead material reduces the infection of thread-blight.

Trees should be structurally pruned as they grow to control both the height (3 to 4 m is ideal) and shape of the tree, which makes maintenance and harvesting easier.

As can be seen in the figure below, it is obviously easier to harvest from smaller trees than from taller ones:
Both pruning and phytosanitation help to reduce pest infestations on cacao trees and pods. While there is no effective way to remove all pests from cocoa farms, it is possible to greatly reduce incidence of pests with these two steps. Pruning should be as vertical and clean as possible to avoid water, insects or fungus entering the wound, thus damaging the stem/wood. An infection could happen as well, but could be avoided by applying wound dressing and sanitized tools.

Pruning is accomplished by using shearsers to remove leaves, which increases the productivity of a tree by supporting pollination and letting the appropriate amount of sunlight in for photosynthesis activity. Trees should be pruned in the center to increase sunlight exposure and reduce humidity. This allows new leaves and pods to form quickly as well as decrease Cocoa Pod Borer (CPB) incidence as sunlight disrupts their reproductive cycle.

8.5.3 Side-Grafting
Grafting is a technique used to both regenerate and increase production of older trees. Additionally, it also ensures that farmers are aware of what seedling clones are used. Budwood is a branch taken from a cacao tree and therefore holds the same genetic traits and attributes as the tree it has been taken from. Budwood is used for vegetative propagation of cacao clones with desirable traits, where the budwood is grafted onto a seedling or mature tree. When the cambium (plant tissue) of the budwood is fused with the cambium of the tree or seedling, they will grow together and become one plant.

Budwood can be grafted onto the side of healthy and strong trunks of older or low-yielding cacao trees. When the emerging superior graft has unfolded its first branches, usually after nine months, the farmer must cut the canopy of the mother-tree to direct the flow of nutrients towards the young graft. Side-grafting can lead to improved yields within two years.

Side-grafting costs are estimated at IDR 2,000 per tree if the farmer side-grafts himself and IDR 5,000/tree if hiring a specialized cocoa farmer to apply the grafts. Some trees are too old to graft and will need to be replaced. Experienced grafters can side-graft about 150 trees per day. Success rates vary highly, depending on the experience of the garter. It could be nearly 100% success rate, while in some cases the rate is below 50%. Unsuccessful attempts can be seen in cocoa farms.
8.5.4. Fertilizing & Soil Conditions
Through production of agricultural products, minerals are withdrawn from the soil. The economic life of a cocoa farm is strongly influenced by the soil condition. Lack of proper soil maintenance and fertilization leads to a gradual decline in the soil’s structure and nutrient value.

Fertilizer is defined as organic or inorganic material added to a soil to supply essential plant nutrients.

In order to increase the productivity of cocoa farms beyond the progressing level, the appropriate use of fertilizers is essential. Fertilizer supplies appropriate and sufficient nutrients to the soil, improves the soil texture and its ability to absorb and retain water. This helps to reduce vulnerability towards pests and infestation, resulting in healthier trees and higher production.

However, if fertilizer is not applied correctly or if it is of poor quality, its yield-increasing effect will be severely limited. This could be because the fertilizer is washed away from rain or blown away by the wind.

For young cacao plants, fertilizers should be applied frequently in small doses. During the first and second year of growth in the field, 3 or 4 applications should be made per year. For mature cacao plants, fertilizer should be split into 2-3 yearly intervals. Preferably, the fertilizer should be applied at the beginning of the rainy season and 4-5 months later, when the plant has the greatest demand for nutrients during the crop development.

Inorganic and organic fertilizer can be distinguished.

All plants need Nitrogen (N). It’s mostly used for the green parts and intensive growth – so for young trees and grasses it’s perfect. However, grasses are not desirable in the area around the cacao plants (see weeding). NPK mixes contain the three main macro-elements the cacao tree needs to grow, especially phosphorus (P), which is critical as it promotes pod growth.

For high yielding farms, the application of fertilizer is essential and must be combined with GAP. If using NPK, between 250 – 500 g should be applied per tree. In addition to the fertilizer, about 5 kg of compost should be applied for its micronutrients, which can improve the chemical and physical soil quality.

Quantity of fertilizer needed per hectare varies a lot and depends on soil type and condition. In the case of cocoa, 35 kg of Nitrogen (N), 6 kg of Phosphorus (P) and 60 kg Potassium of (K) is depleted per ton of dried cocoa beans/ha/year. Based on an average production of 1,000 kg/ha/year, over a period of 35 years the following minerals are taken out of the soil per hectare: 1,230 kg Nitrogen (+2,700 kg urea), 210 kg Phosphorus (+1,000 kg TSP) and 2,100 kg Potassium (K) (+4,200 kg KCl).

Organic fertilizer is made of organic material (e.g. animal manure, green manure, empty cocoa husks, compost). It is important to add organic material to the soil before applying chemical fertilizer because chemical fertilizer cannot replace the lost organic material or improve the soil structure. The basic rule is to use as much organic material as possible and balance the outputs (cocoa beans, sometimes with pod husks, sanitation) and inputs (empty pod husks, leaves, pruned branches, manure, compost). The amount of organic material in the soil is especially crucial in dry areas, where healthy soil can retain water for much longer.

Figure 25: Inorganic Fertilizer
(Source: CSP Roadmap)

Inorganic fertilizers contain one or a mix of these primary macronutrients (sometimes enriches with others):

- Nitrogen (N)
- Phosphorus (P)
- Potassium (K)
- Sulfate
- Ammonium

In the case of cocoa, 35 kg of Nitrogen (N), 6 kg of Phosphorus (P), which is critical as it promotes pod growth.

For high yielding farms, the application of fertilizer is essential and must be combined with GAP. If using NPK, between 250 – 500 g should be applied per tree. In addition to the fertilizer, about 5 kg of compost should be applied for its micronutrients, which can improve the chemical and physical soil quality.

A schematic overview of the subsidized market is shown below. The system knows several flaws that result in:

- Scarcity of (affordable) quality fertilizer at cocoa farm-level
- Scarcity of (affordable) quality fertilizer at cocoa farm-level
- Farmers use the subsidized (mainly inorganic single) fertilizer incorrectly due to lack of knowledge. The added value to cocoa yield is therefore very limited

Figure 26: Fertilizer Distribution
(Source: CSP Roadmap based on Susila (2010))
Fertilizer cannot be applied directly beside the stem. The reason why the fertilizer is used in such a way is the so-called drop zone. Due to the form of the treetop, rain should run off the leaves and drop into the same zone where the fertilizer is applied. The roots that absorb water and fertilizer best are in that zone. (This is also the reason why weeds should be removed from that zone. They take nutrients and water away from the cacao tree.)

In some cases, farms are located in the mountains without proper roads and infrastructure to get up there. It is expensive for farmers to transport fertilizer there, because they have to pay extra staff to carry it up or carry the bags weighing 20 to 50 kg themselves.

8.5.5. Phytosanitation
Cocoa farms should be well maintained to allow optimal production. Part of that is phytosanitation, e.g. moats, so that water can drain and circulate, but also remove dying and dead plants, diseased pods, etc.
8.5.6. Pest & Disease Management

Under the monoculture that has been established, a greater susceptibility to cocoa pests and diseases starts to develop. The farmer is then faced with either investing more in disease control, or risking lower production levels.

It has been demonstrated that implementing a variety of proper farming practices can control infestation. These practices include correctly timing the harvest, planting less susceptible cultivars, proper sanitation and pruning, managing shade trees, using biological controls (black ants, parasitic wasps, etc.) and chemical pesticides (insecticides, herbicides and fungicides). Pesticides are chemical or biological agents that help fight and control pests (e.g. insects, fungi, weeds). 76.6% of the farmers in SCPP use herbicides, 65.8% use insecticides and 26.7% use fungicides.

Pest control on farms is essential, but is often used excessively without additional positive effects on the production and can even be destructive.

8.5.7. Weeding

Weeds can be classified into a number of types, such as annual and perennial grasses, annual and perennial broadleaf weeds, woody plants and climbers. Weeds compete with cacao trees for nutrients, sunlight and water.

Better weed control (manual labor, herbicides, etc.) improves the growth of cacao plants. The use of fertilizer and excessive sunlight (photosynthesis) can stimulate the growth of weeds.

Accordingly, a farm with a complete cocoa canopy and good shade management system rarely needs more than occasional attention. Cocoa farms with an incomplete canopy require regular and costly weed control or mulching.
8.5.8. Shade Tree Management
Shade is needed, especially for immature cacao trees. Shade should be reduced gradually as the cacao plants age. Too little shade will result in bushy growth and more time needed to form a canopy, which also leads to slower growth and weaker branches. When young plants without sufficient hardened leaves are grown in full sunlight, all leaves are exposed to high radiation. This reduces the effectiveness of photosynthesis. Young plants require shade to reduce light intensity and buffer the micro-environment so that excessive moisture stress is avoided. Older trees with a canopy provide some self-shading.

Producing/older trees without shade have a higher pod production and a larger leaf area due to the higher photosynthesis activity. This can only be maintained if nutrients are well provided. However, shade removal shortens the economic life of cacao trees considerably because shade is an effective instrument to control conditions which lead to premature decline of yields.

Moreover, shade trees provide more benefits to the farm and the farmer. Besides adding more organic material to the soil and protecting it from direct sunlight and rain, they capture carbon and might serve as an extra source of income, food, wood or fodder.

The use of shade is generally mandatory to successfully establish cacao trees. Older trees need about 25% additional shade from shade trees.

8.5.9. Intercropping
Cocoa is often grown together with shade trees or intercropped. Intercropping means that there are other plants planted in the area (trees, vegetable, etc.). In Indonesia, shade trees take up more than 7% of cocoa farms and could consist of non-cocoa estate plants (e.g. rubber, coconut), hard woods (e.g. teak, mahogany), fruit trees (e.g. mango, lime, durian), Leguminosae (e.g. Gliricidia, Lamtoro, tamarind) or others. Other crops such as pepper can be planted on the farm as well and contribute to the farmer’s income.

8.5.10. Compost Production
Compost (or other organic fertilizer such as farm manure) adds necessary nutrients and organic material for good soil structure and water absorption. A minimum of 3 kg of fertilizer per tree (around 3 ton/ha) should be applied at least once per year; preferably 5 kg should be applied. It can be applied at the same time as chemical fertilizers to save the time and labor. Producing quality compost usually takes around two to three months and its preparation and transport requires a certain amount of time and labor. However, the cost of compost is nearly free if using only resources from the own farm such as farm and kitchen waste, animal manure, fire ashes and natural activators from available fruits.
8.5.11. Replanting

When trees are old and/or unproductive, they negatively affecting farm productivity. In order to maintain farm productivity trees have to be replanted. The majority of tree losses happen through physical damage, e.g. falling branches from shade trees, insect damage, drought or waterlogging. In the first few years, new trees do not produce much and some might even die. The survival rate of newly planted is between 90% and 95%.

The production of 100% replanted farms were studied with the following results and average yield (in kg) per hectare (see table below). This is a good indication for financial institutions to predict production levels after replanting cacao trees. It shows that in year 3 (first column) production is still low and could not be used for loan installments yet. This changes later. As mentioned before, modern varieties start producing earlier.

<table>
<thead>
<tr>
<th>Yield examples</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm 1</td>
<td>66</td>
<td>883</td>
<td>1278</td>
<td>1885</td>
</tr>
<tr>
<td>Farm 2</td>
<td>117</td>
<td>234</td>
<td>430</td>
<td>736</td>
</tr>
<tr>
<td>Farm 3</td>
<td>173</td>
<td>328</td>
<td>822</td>
<td>834</td>
</tr>
<tr>
<td>Farm 4</td>
<td>112</td>
<td>335</td>
<td>805</td>
<td>1438</td>
</tr>
<tr>
<td>Farm 5</td>
<td>1328</td>
<td>2231</td>
<td>1300</td>
<td>2384</td>
</tr>
<tr>
<td>Farm 6</td>
<td>250</td>
<td>708</td>
<td>824</td>
<td>1287</td>
</tr>
<tr>
<td>Farm 7</td>
<td>453</td>
<td>735</td>
<td>843</td>
<td>1342</td>
</tr>
<tr>
<td>Farm 8</td>
<td>300</td>
<td>1400</td>
<td>2000</td>
<td>2500</td>
</tr>
<tr>
<td>Average</td>
<td>350</td>
<td>857</td>
<td>1038</td>
<td>1551</td>
</tr>
</tbody>
</table>

Table 6: Yield Examples After Planting Cocoa Trees
Source: Wood/Lass

It should be noted that the replanting occurs gradually to keep production and ensure the farmer income. Only in cases where the farmer has sufficient income to cover the period till the new production, the entire farm is replanted. It is recommended to replace 5-10% of the trees per year through replanting. This cumulates during the first 3 years (0, 1, 2) to 18% (if replacing 6%) of the total farm which is not producing yet. Many farmers are reluctant to cut trees as long as they are still bearing pods, even though they produce very few. However, there is considerable doubt about the plant’s longevity under a high yielding cultivation regime.

8.5.12. Spacing

The optimum spacing between cacao trees is the distance which will give the best economic return of cocoa per unit area. It usually varies from 2.5 to 4 m and is affected by several factors: the vigor of the trees, type of planting material, shade conditions, cropping system, and soil and climate. Too much space means that the farm productivity could be increased by planting more trees. That would be a low-cost option to increase production.

8.5.13. Harvesting

Harvesting involves removing ripe cocoa pods from the trees and opening them to extract the wet beans. As they ripen, the pods change color. The unripe pods can be harvested too; pods that are not fully ripe will ferment satisfactorily. Ripe pods should be collected immediately as there is a possibility of unwanted germination of the beans. There is a considerable period of time, 2-3 weeks, during which a pod is ready for harvesting. It’s recommended that harvesting be done every week, although longer periods are possible. Studies have shown that with weekly harvests the yield is at its highest, especially because of lower pests and diseases incidence or other losses on the tree. The peak harvest season depends highly on the region.

The pod opening processes can vary considerably. Pods can be collected in the field and opened at a “gathering point”. They also could be transported, e.g. to the fermentation place. Unopen pods weight about 4 times more than just the wet beans after removing them from the pod. Pods can be opened by cracking on a stone or with a wooden billet. A knife can be used, but this is not recommended as it could damage the beans inside.

A farmer can harvest 1,500 pods/day or open 1,500 pods/day. They can harvest and open about 900 pods in the same day. Both activities together take about 33 days per ton of dry beans.

Pods that have not been harvested are a major source of infestation. They do not fall off the tree like other crops such as mangoes. Climbing on the tree for whatever reason (harvest, pruning, etc.) should be avoided as it can damage the branches and flower cushions.

Figure 29: How Pods Should Be Harvested
Cocoa Production

Photo 38: Cutting the Pod

Photo 39: Collecting Pods

Photo 40: Opening Process

Photo 41: Open Cocoa Pod with Seeds and Pulp
8.6. Post-harvest Processes

8.6.1. Processing for Cocoa Commodities
Processing cocoa beans begins right on the farm, in the village or on the plantation. In the smallholder system, efficiency is currently by no means optimal and a significant wastage of beans can happen in the fermentation or drying process. These two processes are important for developing distinct flavors in the cocoa, but all processes, not just these two, impact the final character and quality of the finished product. The major processors and brand owners seek to influence as many of these processes as possible in order to achieve a product quality that meets their brand promises. Beans and cocoa that are consistently produced with quality standards will achieve a premium over beans that have been produced under variable and unaudited conditions.

Chocolate flavor is developed in two stages: during the curing process by the grower and roasting by the manufacturer. Good flavor cannot be obtained by one of these processes alone. The curing process is divided into two parts: fermentation followed by drying.

8.6.2. Fermentation
Fermentation of cocoa beans is a process that releases the familiar chocolate flavor which is well-known throughout the world. It is a biological process that is crucial for the development of the cocoa aroma. It takes about 5 days to complete and reduces the weight of cocoa beans by 7 to 8%. Fermenting the beans enhances the flavor as the process reduces the tannin content which is responsible for the bitter taste of raw beans. When farmers ferment their beans, they can receive a potential premium price up to IDR 2,000/kg. Fermentation is a stage in the processing of cocoa beans that typically happens on the farm or in the producer village. In a fragmented smallholder system outcomes cannot be expected to be uniform.

During fermentation the wet beans heat up as a result of exothermic chemical reactions in the pulp. Much of the pulp drains away as sweating. After 36 and 72 hours from the start of fermentation the beans are killed and thereafter chemical reactions take place inside the bean. Important among these are oxidation reactions which continue during the drying process.

There are two methods used for fermentation: the box and heap method. The box method uses strong wooden boxes with some holes to provide drainage and air ventilation. In the heap method beans are laid on plantain or banana leaves and are covered with more leaves. Ideally, fermentation should be started within 4 to 6 hours (or at most within 2 days) after harvest.

Fermentation boxes measure typically 1.2 x 1.2 m, with a depth of 0.9 m, and will hold about 1 ton of wet beans when loaded to a depth of 0.75 m. A minimum weight of about 50 kg of wet beans is needed for satisfactory fermentation.

Properly fermented beans are brown or dark red while partially fermented beans are purple. Over-fermented beans are very dark in color. Under-fermentation will produce beans with a bitter taste and astringency will be expected in the final product. Over-fermentation will produce beans with little chocolate flavor. The purpose of turning the beans during fermentation is to ensure uniformity.

Fermentation is a stage in the processing of cocoa beans that typically happens on the farm or in the producer village. In a fragmented smallholder system outcomes cannot be expected to be uniform.

Properly fermented beans are brown or dark red while partially fermented beans are purple. Over-fermented beans are very dark in color. Under-fermentation will produce beans with a bitter taste and astringency will be expected in the final product. Over-fermentation will produce beans with little chocolate flavor. The purpose of turning the beans during fermentation is to ensure uniformity.

Fermentation boxes measure typically 1.2 x 1.2 m, with a depth of 0.9 m, and will hold about 1 ton of wet beans when loaded to a depth of 0.75 m. A minimum weight of about 50 kg of wet beans is needed for satisfactory fermentation. A fermentation box costs about IDR 750,000 to 1,000,000.

8.6.3. Drying
The main objective of the 3-5 day drying process is to reduce the moisture content of the beans from about 60% to 7.5%. A moisture content of around 7.5% means the beans are safe for storage and shipment.

Wet beans are because of their water content approximately 3 times heavier than dry beans. If the moisture content of cocoa beans is above 8% there is risk of molds developing within the beans. Below 5% the beans will be very brittle.

During fermentation the wet beans heat up as a result of exothermic chemical reactions in the pulp. Much of the pulp drains away as sweating. After 36 and 72 hours from the start of fermentation the beans are killed and thereafter chemical reactions take place inside the bean. Important among these are oxidation reactions which continue during the drying process.

Another objective is the continuation of the oxidative stage of fermentation. This plays an important role in reducing bitterness and astringency and develops the chocolate brown color of well-fermented beans. Faulty or rapid drying has to be avoided as it can lead to an ‘off-flavor’ and excessive acidity being present in the cocoa product.

8.6.4. Drying without fermentation
Beans which are dried without being fermented at all have been killed by drying instead of by the heat and acid arising during fermentation. Therefore, none of the changes which take place as a result of the breakdown of the internal cell structure have occurred. Taste and smell do not evolve, so the cocoa is of low quality.

Drying also takes place at or near the place of production. Beans may be heaped on leaves, in boxes or baskets, or spread out on trays or mats. After drying the beans are packed into bags and delivered for sale. The weight of dried beans is 37-40% of the weight of wet beans.
8.6.5. Sorting/grading
As outlined in the quality section, there are price discounts or price premiums if certain characteristics are present. Too much waste such as stones and sticks results in a price discount. Appropriate removal of waste can result in higher prices. Some farmer organizations have a sorting machine, where waste is removed through a mechanical process. Beans that are too small could reduce the average weight, but they could be sorted out.

8.6.6. Storage
Typically, beans are bagged in jute sacks which can hold approximately 62.5 kg per bag. Storing beans in the tropics presents two potential problems: the development of mold and the spread of pests. It is safe to store cocoa beans for 2-3 months, but if stored longer, special precautions must be taken to ensure that quality does not deteriorate from either one of these causes.

Jute bags should be preferred over plastic bags, since the beans can “breath” and do not sweat in jute bags.

The cocoa storage building should have a cement floor or concrete blocks. Doors and windows should provide sufficient ventilation, and temperature variation within the storage should be minimized. The relative humidity in cocoa storages should not exceed 80%, because beans could absorb moisture to a level higher than 8%. Most farmers store the beans in their house. Traders store the beans in their shops and warehouses until they are delivered to an off-taker.
8.7. Sale
Beans can be sold wet, fermented and dried.
Larger traders/warehouses have standard procedures for setting the daily price for standard quality beans and how to calculate positive or negative differences based on quality. There are several ways how to determine the price of the beans:

- Standard price for standard quality. Deductions for higher moisture, excessive waste in the bags, infestations, off-flavors, etc.
- Price premium for certified beans and better quality, e.g. less moisture or fermented beans. The premium price is either given to the farmers after inspection or at a later stage.
- Price difference between wet beans and dried beans. Due to the weight difference (100 kg wet beans become between 37 to 40 kg dried beans, because they lose water content during the drying process), prices are calculated accordingly.
- Using New York price fixing per ton in USD, minus a discount of USD 500 for Indonesian cocoa, then applying the current exchange rate between IDR and USD.

8.8. Transport
Transport from farms to traders often takes place by motorbike, obviously in small quantities. Transportation from traders to larger traders, processors or exporters usually happens with smaller or larger trucks, either owned by the trader or rented. If the truck is rented, the cost very largely between the regions and can be between IDR 350 and 2,000.

During overseas transport, cocoa is stored in closed containers, most likely lacking ventilation. A dropping temperature could cause condensation in the container, leading to some damage of the beans in the top layer. The same applies for infestation during the storage or transport period. In Indonesia, processing capacity was established in previous years so this problem is not as dominant and many beans are processed in the country.

Approximately 80% of smallholders sell to local collectors and traders with whom they have long trusted relationships. About a third of sales transactions take place at the smallholder’s home, and half of the sales takes place at a collection facility. The number of sales transactions per smallholder varies between 13 and 24 times per year with an average value of IDR 500,000 per sale. About 20% sell directly to exporters or manufacturers, particularly smallholders who sell fermented or certified beans. Only a quarter of smallholders negotiate cocoa bean prices with the purchaser, but this may be due to transparency in pricing as they receive daily pricing via text message from both local collectors and major trade companies. Margins are small for both collectors (reported at IDR 800-1,200 per kg) and traders, as they must deal with daily fluctuations in exchange rates.

In many cases, collectors are farmers that are better off than others and can afford to buy a motorbike and have access to cash working capital. Collectors sell to traders at village, sub-district or even district level, who sell on to the next level.

Shortage of working capital stimulates traders and collectors to buy and sell as much and as quickly as possible rather than maximize profit percentages. This leads to high competition and relatively high farm gate prices between 70-80% of FOB (free-on-board) price levels and sometimes even more. On the other hand, the rush and time pressure in peak seasons and the use of outdated processing machinery leads to loss of quality in the end product.

Quality assessment during the sale occur as described above, e.g. bean counts, assessment of defective/faulty beans, or test for off-flavors. Traceability must be ensured during the entire process.
9. CERTIFICATION & TRACEABILITY

Certification is a process whereby smallholders are evaluated and accredited based on sustainable GAP, protection of the local ecosystem, and safe working conditions. The certificate needs to be renewed on an annual basis.

Demand for certified cocoa comes from importing nations, not from producer countries. Certification requires smallholders to document their activities and make changes to their farm management practices if necessary. Some buyers pay a price premium for certified and traceable cocoa. This can be up to USD 200/MT.

Requirements for certification include implementing GAP, establishing farmer group internal control systems, respecting human rights, banning child labor, addressing environmental issues, recording farm inputs and smallholder income, having farm management plans, and training. Environmental issues may include addressing pest management, limiting which pesticides are used, maintaining soil fertility, protecting biodiversity, safe water management, practices to reduce greenhouse gas (GHG) emissions and increase carbon sequestration. Compliance is determined by independent audits on the outset of certification and on regular time intervals.

The purchaser of certified cocoa beans must be able to trace the product back to the producer by keeping records (name, date, volume, and price) that show the flow of cocoa beans from the smallholder to a processing factory. Auditors would evaluate if an organization sells more certified products than its purchase records indicate. While it may add transparency and sustainability to the supply chain, it burdens smallholders with additional costs.

The most well-known certification organizations working in Indonesia are UTZ, Rainforest Alliance and Fairtrade International.

One of the most important advantages for financial institutions is that certification requires documentation. Those documents can be analyzed during a loan application process if needed. It does not mean that a certified farmer is automatically a better loan client, but at least the financial institution can get an idea of the farmer’s situation.
Figure 30: Traceability Process
10. PICTURES, DEFINITIONS, AND PROCESSES

The following chapter contains some additional information on cocoa processing, pests and diseases, etc. in order to get a well-rounded picture of the cocoa sector.

10.1. End Products

The most well-known cocoa end product is chocolate in all its forms and cocoa powder for beverages or the baking industry. From an industrial perspective, cocoa products are distinguished between cocoa liquor (mass), cocoa butter and cocoa powder.

10.2. Raw Products

10.2.1. Cocoa Nibs

Cocoa beans that have their shells removed before roasting are called nibs. They are perfectly roasted cocoa beans separated from their husks and broken into small pieces. They are the essence of chocolate. Nibs add crunchiness and subtle chocolate flavor to baked goods and savory dishes. They make a great substitute for roasted nuts or chocolate chips, without added sweetness.
10.2.2. Cocoa Liquor
The roasted nibs are ground to produce cocoa liquor. Cocoa liquor contains the cocoa solids and cocoa butter in whatever proportion they were present in the preceding cocoa nibs. The winnowed nibs are simply crushed and heated to create cocoa liquor.

Cocoa liquor contains 50-58% cocoa butter, most of which can be extracted by hydraulic pressure. The solids that remain are referred to as press cake (or ‘cocoa cake’). This can then be broken down to make cocoa powder.

10.2.3. Cocoa Cake
Cocoa cake or press cake is the result of the cocoa butter extraction process after the cocoa liquor has been pressed. The solids left over are referred to as the cake, which is then refined to a very small particle size.

The fat content of the cake can vary. Some high fat cake (22%) is produced for grinding into cocoa powder for drinking chocolate, etc. Most cake produced is low fat (11%). These cakes are used to produce cocoa beverages, but also used by the baking industry and for the manufacturing. When used for industry purposes the cake is reconstituted with other vegetable fats of chocolate flavored or compound coatings.

10.2.4. Cocoa Butter
Pure Prime Pressed Butter (PPP Butter) is obtained from cocoa liquor by mechanical pressing. It is filtered and deodorized to eliminate any remaining cocoa solids. It is then cooled and packed.

Cocoa butter is by far the most expensive ingredient in dark and milk chocolate.

10.2.5. Cocoa Powder
• Cocoa powder has the widest spectrum of all cocoa products. It is produced with diverse characteristics
• It is influenced by the early stages of roasting and processing, with the blend of beans chosen for each round of grinding
• During pressing, the processor can choose the percentage of butter fat (10-12%) to leave in the powder
• After being pressed, alkalinization or the ‘Dutch Process’ allows for a diversity of colors, flavors and applications

Finally, the powder is typically packed in 1 MT bulk sacks made of woven polyethylene, or 25 kg bags with three layers of Kraft paper that each have an internal polyethylene coating that acts as a moisture barrier.

Natural cocoa powder is primarily used in the baking and confectionery industry and often forms the flavor base for compound coatings.
10.3. Pests and Diseases

10.3.1. Black Pod
Black pod, also known as pod rot or Phytophthora, is a fungal cocoa pod disease, which causes pods to shrivel and die. Major economic loss occurs from infection, especially in the 2 months before pods reach ripeness.

The fungus infects pods of all ages. If left untreated, a farmer could face losses between 30–60% of their cocoa pod production. The most important method to overcome black pod is regular sanitation of the trees and diseased pods. Using a copper fungicide also reduces the infection.

10.3.2. Vascular-Streak Dieback
Vascular-streak dieback (VSD) is a disease impacting leaves by slowing or stopping the photosynthesis process. It can have physiological or pathological reasons, such as environment, nutrition, fungal invasion, pest attacks or a combination of any of these reasons. For instance, wood boring insects could pave the way for pest/diseases by giving an entry point for fungal infection or wound parasites. Losses could be from 25% up to 40%.

10.3.3. Other Diseases
In Indonesia, other fungal and virus diseases are of less importance from an economic point of view. Root diseases cause losses of only 1-2% of the trees.

10.3.4. Cocoa Pod Borer (CPB)
In Indonesia, the Cocoa Pod Borer (CPB) is a major pest. The CPB is a moth who lays larva on the surface of cocoa pods which tunnel into the pods and eat the cocoa beans. It is sometimes still possible to harvest some beans from an infected pod; but there are fewer beans, and they are of poor quality and should not be fermented. Sanitation and proper shade management is the most important practice to reduce infestation of CPB.

10.3.5. Other Pests
As a group, mirids (capsids) are the most important and widely represented insect pests of cocoa. Their feeding inflicts severe damage, especially to the extent to which they attack stem tissue. They also fall into the pathological category since fungal infections can take hold in feeding lesions on the stems. In Indonesia, helopeltis, a genus of the mired family, cause serious losses if not treated properly.

Other pests are present, but have a lower impact on production. One example is the stem borer, but also other bugs such as leaf hoppers and other leaf eating insects. While pests cannot be eliminated, they can be reduced by pruning, phytosanitation, frequent harvesting, and pesticides. Trees suffering from water stress will succumb more easily from attacks by fungi and pests.

Tall shade trees (like rubber, forest trees or coconut trees) are associated with lower pest infections.

Rats, monkeys and squirrels can also cause some physical damage to cacao trees and cocoa pods, especially on farms in forested areas.
The life cycles of all cocoa minds are similar. The eggs are first buried in the epidermal layer of pods, pod stalks, chupons or fan branches. They then hatch after 10-17 days. The two slender, sub-equal terminal filaments on the egg protrude above the plant surface. There are five successive juvenile stages (nymphs), in total taking up 18-30 days. In the last stage, the insects molt to produce the winged adult insects. The adults are medium-sized (7-12 mm long).

10.4.1. Roasting
Beans should be roasted within a couple of months after fermenting and drying to reduce the chance of moisture build up; this means that the period from harvesting to processing may be less than 13 weeks. Industry stocks tend to be measured by the products of processing: cocoa butter and cocoa powder. After the cocoa beans have been received at the processing location, they are inspected and thoroughly cleaned of all extraneous matter, such as sticks, stones, metal fragments, as well as broken beans. This process involves sorters, which remove items that are lighter or heavier than cocoa beans. Sieves are also used to eliminate items that are too small or too big.

- The roasting process is designed to bring out all the rich aromas and flavors in the beans and reduce any remaining moisture content to 1.5-2.0%.
- Roasting can be done on the whole bean before shelling or on the nib after shelling.
- However, it is known that the roasting process makes it easier to de-hull the beans.
- The time and temperature allowed for the roasting are important influences on flavor: a “low roast” produces a more acidic, aromatic flavor, while a “high roast” gives a more intense, ‘bitter chocolate’ taste.
- In this process the acids and other agents likely to produce bitterness in the cocoa should be removed including any agents or remaining pathogens that might cause the beans to degrade.
- Roasting occurs in large rotating ovens at temperatures between 100°C and 140°C (210-280°F) and should follow a precise curve.
- If the temperature is too high, starches caramelize and the beans loose fat content, resulting in loss of desired taste.
- Roasting can last anywhere from 20 minutes to 2 hours, depending on the unique characteristics of the beans (variety, bean size, moisture, plumpness, etc.).

Generally speaking, chocolate manufacturers prefer to roast the beans before hulling them, while cocoa processors favor the nib-roasting process. Bean roasting allows for more variety in the degree of roast and development of flavor, but requires beans of a uniform size. Nib roasting is more even and does not require uniform bean size. Removing the shell before roasting prevents migration of cocoa butter from the bean into the shell during the roasting process. This migration is an important yield factor.

10.4.2. Cocoa Processing
- After roasting, the beans are crushed to release the nib from the shell and then winnowed (blown) through a tunnel to separate the nib and shell.
- The roasted nibs are ground to produce cocoa liquor and cocoa mass (cocoa particles suspended in cocoa butter) resulting from the high temperatures during grinding. The grinding process generates approximately 80 kg of cocoa liquor / mass for every 100 kg of cocoa beans. Manufacturers generally use more than one type of bean in their products and therefore the different beans have to be blended together to get the required formula.
- 80 kg of liquor will yield approximately 40 kg of butter and 40 kg of powder, but cocoa powder will retain between 10-12% fat content.
- The cocoa liquor is then fed into hydraulic presses that remove a predetermined percentage of the cocoa butter, leaving behind a solid material called cocoa cake which, according to the processor’s requirements, may contain anything from 6-24% of cocoa butter. The cocoa cake is either broken into smaller pieces (kibbled) and sold to the generic cocoa cake market, or it is ground into a fine powder.
- The extracted cocoa butter is then filtered and stored in tanks in liquid form until it is ready to be turned over to the chocolate operation, if at the same location. Otherwise, it is shipped to its final destination either in liquid form in tank trucks or in molded form in cartons. It is sold as ‘pure, prime pressed, natural’ cocoa butter.

Virtually all the cocoa butter produced by the international cocoa processing industry is used in the manufacturing of chocolate, where it must be added to the liquor to achieve the desired result. The pharmaceutical and cosmetics industries, which also use cocoa butter, may obtain their requirements from sources using solvent extraction or other methods besides pressing cocoa butter from cocoa shells. Some may use cocoa beans that are not suitable to be made into a food item.

10.4.3. Chocolate Manufacturing
In the chocolate manufacturing process, cocoa liquor is mixed with cocoa butter and sugar. In the case of milk chocolate, fresh, sweetened condensed or roller-dry low-heat powdered whole milk is added. What milk product gets used depends on the individual manufacturer’s formulae and manufacturing methods. In the crumb or flake process, liquor is blended with sugar and pre-condensed milk, or sweetened condensed milk.

It is then dried on heated rollers to produce the ‘caramel’ flavor more common for European chocolate, or mixed with slightly acidified milk to produce the typical American ‘cheesy’ flavor. These distinctions are a matter of taste and not of quality. After the mixing process, the blend is further refined to bring the particle size of the added milk and sugar down to the desired fineness. The mixture is then placed into conches, i.e. large agitators which stir it under heat. Normally, cocoa butter is added at this stage, although some manufacturers add it during the original blending process. Conching eliminates unpleasant and undesirable odors and further smoothens the particles. Generally speaking, the longer chocolate is conched, the smoother it will be.

The process may last for a few hours to three full days, and in the case of expensive coatings, even longer. After the conching process the liquid chocolate is either stored at the processing factory or delivered in tanks to the confectionery industry. At the processing factory, the liquid chocolate can be tempered and poured into block molds for sale to the confectionery, dairy and baking industries. It may also be converted into proprietary bars for direct sale to the consumer market.
10.4.4. Cocoa Processing Chain

Figure 31: Cocoa Processing Chain
Source: ITC (2001)

10.4.5. How Chocolate is Made

Figure 32: How Chocolate Is Made
Source: www.wickedgoodies.net (redesigned)
10.4.6. How chocolate should be stored
Source: chobachoba.com

There are three essential factors: temperature, air and light.

Chocolate is rich in fat (cocoa butter) which makes it absorb foreign odors very quickly. Therefore, it is absolutely necessary to keep it away from other products with intense odors such as cheese, fish, meat, citrus, etc. The best storage place therefore is an airtight container and neutral packaging.

Air and natural/artificial light lead to oxidation of the chocolate which turns it rancid. Its fat disintegrates, the flavor changes and the chocolate develops an unpleasant smell. While chocolate is especially sensitive to oxidation since it doesn’t contain any anti-oxidants. Dark and milk chocolate, on the other hand, naturally contain substances that slow down this process. You should therefore choose a dry and dark environment with constant temperature (between 15 and 18 degrees Celsius). Keep your chocolate in an airtight container and avoid strong odors, humidity and strong light. If you have to store it in the fridge, make sure to take it out at least one hour before consumption.

10.5. Cocoa Dictionary

Adulteration
Adulteration of the composition of graded cocoa by any means whatsoever so that the resulting mixture or combination is not of the grade prescribed, or affects injuriously the quality of flavor, or alters the bulk or weight.

Bittersweet
Bittersweet, also known as dark chocolate or semi-sweet chocolate, is prepared by blending chocolate liquor with varying amounts of sweeteners and cocoa butter. The amount of chocolate liquor varies by region.

Broken Bean
A cocoa bean of which a fragment is missing, the missing part being equivalent to less than half the bean.

Chocolate Butter Equivalents (CBE)
Cocoa-butter-equivalent products improve performance, simplify use and save money. They were created to complement and enhance the chocolate. While visually undesirable, the product is safe to eat.

Cocoa Beans
The seed of the cacao tree (Theobroma cacao linnaeus).

Cocoa Butter
A natural fat that is present in cocoa beans. It is obtained by pressing chocolate liquor.

Cocoa Powder
The result of grinding or pulverizing press cake, which is available in different fat levels. May be natural or Dutched process.

Cocoa Solids
Fat free dry cocoa solids, i.e. moisture free, fat free cocoa material.

Clone
Identical planting material having the same characteristics as the original tree. Clones are bred from hybrids in controlled environment to bear certain characteristics, such as high productivity potential, flavor, pest and disease tolerance, and drought and flooding resistance.

Fat Bloom
The white cast and soft texture that is the result of poor tempering or exposure of the chocolate to high temperatures or migration of fats into the chocolate. While visually undesirable, the product is safe to eat.

Dutching Process
An alkaline treatment of the nib prior to grinding, or the liquor prior to pressing. This process darkens the resultant chocolate liquor or cocoa and modifies the chocolate flavor.

Emulsifier
A surface-active agent promoting the formation and stabilization of an emulsion. In chocolate emulsifiers such as lecithin, ammonium phosphatide and PGPR are used to influence the flow properties of chocolate.

Enrobing
The act of coating a biscuit/candy center by covering it with chocolate. Usually done by mechanical means.

Finesseness
The measurement of the average particle size of the cocoa or chocolate solids. Finesseness is expressed in ten-thousandths of an inch or in microns. It may be measured as largest particles present in the product by a sieve residue, a grindometer or a micrometer, or by measuring the particle size distribution with more sophisticated methods such as a laser diffractometer or an image analysis.

Finger
A mechanical process of reducing the roasted beans so that they are easier to separate. Usually done by mechanical means.

Foreign Matter
Any substance other than cocoa beans, broken beans, fragments, and pieces of shell.

Fragment
A piece of cocoa bean equal to or less than half the original bean.

Germinated Bean
A cocoa bean, the shell of which has been pierced, slit or broken by the growth of the cotyledons.

Grinding
A mechanical process of reducing the roasted cocoa bean nib to a smooth liquid known as chocolate liquor.

Hybrid
Also known as a cross-bred is a tree raised from seeds that were cross-pollinated from certain number of varieties (clones) in a controlled environment. Hybrids are then a result of mixture of characteristics among the different parents. As clones, they are bred to be highly productive, tolerant to resist to pests and diseases and weather instability.

Insect-Damaged Bean
A cocoa bean the internal parts of which are found to contain insects at any stage of development, or to show signs of damage caused thereby, which are visible to the naked eye.

Lecithin
A natural food additive that acts as an emulsifier and surface active agent. Most commercial lecithin products are derived from the soybean. In chocolate manufacture, it controls flow properties by reducing viscosity. Typical usage levels range from 0.1 to 0.7%.

Milk Chocolate
Milk chocolate is made by combining milk solids with a minimum of 10% chocolate liquor and 12% milk with cocoa butter, sweeteners and sometimes flavorings.
Moldy Bean
A cocoa bean on the internal parts of which mold is visible to the naked eye.

Natural Process
Non-alkalized chocolate liquor or cocoa processed without an alkaline treatment.

Nibs
Nibs are the “meat” or center of the cocoa bean. Roasted or unroasted cocoa beans are mechanically cracked, allowing the separation of the cocoa bean shell from the cocoa nib.

Piece of Shell
Part of the shell without any of the kernel.

Press Cake
Product that remains after most of the cocoa butter has been pressed from the chocolate liquor. Press cake is pulverized to make cocoa powder.

Pressing
The process of partially removing cocoa butter from the cocoa liquor by means of hydraulic presses. The two products of pressing are cocoa butter, which is filtered and stored in tanks, and press cake.

Roasting
A cooking or heating process using high temperature dry heat, which fully develops the chocolate flavor of cocoa beans.

Semi-Sweet
See “bittersweet,” another name for semi-sweet.

Slate
The formation of stratified layers in a bar of chocolate. This is usually caused by the outer surface of the stream of chocolate filling a mold being colder than the center of the stream.

Smoky Bean
A cocoa bean which has a smoky smell or taste or which shows signs of contamination by smoke.

Tempering
The process of preparing chocolate so that it will solidify in a stable crystal form. Proper tempering, when followed by good cooling, provides contraction from molds and optimum surface gloss. Tempering is required for chocolate products and certain confectionery products.

Thoroughly Dry Cocoa
Cocoa which has been evenly dried throughout. The moisture content must not exceed 7.5%.

Viscosity
A measure of a coating’s resistance to flow in melted form, which determines its ability to cover a center of confectionery, cake, cookie or ice cream. Viscosity is affected by process and formulation varieties.

White-Cocoa-Butter-Based Confectionery Coating/White Chocolate
A blend of sugar, cocoa butter, milk solids (whole/skimmed milk) and flavorings. This product cannot be called “chocolate” in the United States since it does not contain cocoa solids.

Winnowing
The process of cracking and removing the cocoa bean shell, revealing the inner part of the bean (the nib).

All definitions are sourced from ADM. 9

9 Meanwhile ADM Cocoa was bought by Olam and the respective internet link doesn’t work anymore.
Swisscontact Indonesia Country Office
Gedung The VIDA Lantai 5 Kav. 01-04 Jl. Raya Perjuangan, No. 8
Kebon Jeruk 11530 Jakarta Barat | Indonesia
Telp. +62-21-2951-0200 | Faks. +62-21-2951-0210

Swisscontact - SCPP Sulawesi
Gedung Graha Pena Lantai 11 Kav. 1108-1109 Jl. Urip Sumoharjo, No. 20
Makassar 90234 Sulawesi Selatan | Indonesia
Telp. | Faks. +62-411-421370

Swisscontact - SCPP Sumatra
Komplek Taman Setiabudi Indah Jl. Chrysant, Blok E, No. 76
Medan 20132 Sumatera Utara | Indonesia
Telp. +62-61-822-9700 | Faks. +62-61-822-9600

www.swisscontact.org/indonesia

Cover : A well-maintained cacao tree yielding large green cocoa pods.
Photos : Swisscontact Indonesia
Layout : Swisscontact Indonesia

Swiss NPO-Code: The structure and management of Swisscontact conforms to the Corporate Governance Regulations for Non-Profit Organisations in Switzerland (Swiss NPO-Code) issued by the presidents of large relief organisations. An audit conducted on behalf of this organisation showed that the principles of the Swiss NPO-Code are adhered to.

ZEWO-Gütesiegel: Swisscontact was awarded the Seal of Approval from ZEWO. It is awarded to nonprofit organisations for the conscientious handling of money entrusted to them, proves appropriate, economical and effective allocation of donations and stands for transparent and trustworthy organisations with functioning control structures that uphold ethics in the procurement of funds and communication.

February 2017